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INTRODUCTION

The high moisture content of porous con-
struction materials is associated with many prob-
lems. These can be structural, hygienic or health 
problems of the residents of these buildings [1]. 
When solving these problems, it is therefore de-
sirable to determine the moisture content of these 
buildings with high accuracy.

Time domain reflectometry (TDR) is an in-
direct measurement method for determining the 
moisture content of investigate media. The meth-
od allows samples to be tested outside the labo-
ratory, while the testing takes a relatively short 

time and provides good accuracy. The mentioned 
properties are among the main advantages of the 
method. Disadvantages include the fact that the 
method can be affected by other factors, such as 
salinity [2]. In the past, this technique was used to 
determine the moisture content of mostly soil [3, 
4], nowadays it is also widely employed in deter-
mining the moisture content of porous building 
materials [5–9]. In this method, the moisture of 
the material is determined using apparent per-
mittivity as an indirect physical quantity. Porous 
building materials consist of three phases – solid, 
liquid, and gas. The solid phase, which forms the 
matrix, is characterised by a permittivity value of 
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up to 15. The liquid phase, i.e. water, has a permit-
tivity value of 80. The gas phase (air) has a per-
mittivity value of 1. The great difference between 
the liquid phase and the solid phase is caused by 
the asymmetric distribution of the water charge. 
Due to this high difference in permittivity values 
the water content of the investigated material is 
possible to be determined [7].

The TDR device consists of a multimeter and 
set of probes. The multimeter generates the elec-
tromagnetic signal and in parallel analyses this 
signal [1]. The TDR probe is a pulse conductor 
that transmits signal along its elements. Several 
types of probes are used. Typically, the probe con-
sists of two parallel conductive rods that are in-
serted into the medium under test. There are also 
surface sensors that do not require any material 
destruction. The measurement can be carried out 
on very hard materials, into which parallel con-
ductive rods cannot be introduced [5–7]. The per-
mittivity of the measured medium is determined 
using the propagation time of the electromagnetic 
signal along the conductors.

The relative permittivity of the environment ε 
is subsequently determined as:
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where: c is the speed of light in vacuum and v 
is the propagation speed of the electro-
magnetic pulse along the measuring rods 
[m·s-1]. The equation expressed using the 
length of measuring rods L is also used:

 

 
 𝜀𝜀 = (𝑐𝑐𝑣𝑣)

2
 

(1) 

 
 
 

𝜀𝜀 = (
𝑐𝑐𝑡𝑡𝑝𝑝
2𝐿𝐿 )

2
 

(2) 

  
 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒−𝑦𝑦|𝑥𝑥−𝑥𝑥𝑖𝑖|2 (3) 

 
 

 
 𝑦𝑦 = 𝑤𝑤𝑥𝑥𝑇𝑇 + 𝛾𝛾 (4) 

. 
 

 (2)

where: tp is the propagation time of the signal. 
The number two is in the denominator 
because the impulse propagates along the 
bars in both directions [7].

Using the calibration models, the apparent 
permittivity of the material is then converted to 
the water content in the material. Physical or em-
pirical models are used. Physical models are not 
dependent on calibration measurements. Howev-
er, the models often do not take into account the 
morphology and shape of the tested media, which 
affects their accuracy. Another disadvantage is the 
relatively complex mathematical formulations, 
which are difficult to apply in practice. Empirical 
models are therefore often used when carrying 
out measurements in practice. Empirical models 
are created by correlating with the gravimetric 

method. They can be universal or individual. The 
model proposed by Topp in 1980 is an often used 
universal empirical model [10]. This model uses 
only the measured permittivity to determine the 
moisture content of the material under investiga-
tion. In the case of universal models, inaccuracy 
is introduced into the determination of moisture 
content caused by their universality. Therefore, 
there was an effort to reduce the uncertainty of 
the measurement. Malicki et al. [11] proposed 
an empirical model, which includes the density 
of the investigated medium in its dry state. Indi-
vidual models are designed specifically for the 
material under investigation and therefore often 
provide higher accuracy. There are many sources 
in the scientific literature that present empirical 
models. Since the TDR method was used in the 
past primarily to measure soil moisture. An ex-
ample is the empirical models published by Ren 
et al. [12] or the models published by Mastrorill 
et al. [13]. In addition to these models, empirical 
individual models for determining the moisture 
content of porous building materials represent a 
significant contribution. An example is the work 
of the authors Sobczuk and Suchorab [8], which 
provides models for autoclaved aerated concrete 
with different densities ranging from 400 to 700 
kg·m-3. Another example is a model designed in-
dividually for calcium silicate [14].

Artificial intelligence could be applied in the 
process of formulating the empirical models for 
evaluation of moisture using the indirect methods 
of detection as an alternative to the classical de-
terministic models. Artificial intelligence method 
is a method that is able to make decisions on its 
own based on input data. Machine learning rep-
resents a subdomain of artificial intelligence, 
where the user provides the data and the output 
or the desired results, and then machine learning 
generates a program or rules for the output attrib-
ute. Machine learning represents an automated 
process of traditional learning and increases the 
accuracy of analytical capability. The algorithms 
created in machine learning by processing train-
ing data create mathematical models on basis of 
which they subsequently predict situations [15].

Machine learning is a data analysis technique 
currently applied in many scientific disciplines. 
An example study by Shahi et al. [16] could be 
mentioned, where the authors comparatively 
studied the development of stock prices through 
deep learning. Another example is the contribu-
tion by Guefrechi et al. [17], where the authors 
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proposed a classification model for detecting the 
COVID-19 viral disease, which achieved an ac-
curacy of ~ 98%. Artificial intelligence was also 
used in the derivation of temperature-dependent 
material models for structural steel which was 
presented by Naser [18] or in the simulation of 
numerical data of water flow in pipes filled with 
copper porous medium [19]. 

In the available scientific literature, the arti-
ficial intelligence was also used for modelling of 
moisture properties of the soils. In the research 
described by Achieng [20], soil retention curves 
were determined. Soil moisture was measured 
using a TDR and the measured data was used to 
train and test artificial intelligence methods. The 
authors used the following methods to model the 
soil water retention curve: support vector regres-
sion models, single-layer artificial neural network 
and deep neural network. The results show that 
support vector regression Models achieved the 
best results among the tested techniques. The 
curve models obtained by artificial intelligence 
did not require knowledge of the physical param-
eters of the soil and provided reliable simulations 
of the soil water retention curve. In their work, 
Hong et al. [21] also presented the combination 
of TDR technique and deep neural network for 
determining electrical conductivity in saline me-
dium with lead contaminated solution. With the 
use of artificial intelligence, the conversion rela-
tionship between the output value from the time 
domain reflectometry measurement and the volu-
metric electrical conductivity at different frequen-
cies was developed.

Machine learning provides a simpler ap-
proach to problem solving, because it allows the 
user to train the system using examples of de-
sired output-input behaviour instead of manually 
predicting the outputs of all possible inputs [15, 
22]. Various algorithms have been developed for 
training. In supervised machine learning, these 
algorithms can be divided into two groups: clas-
sification and regression algorithms [23]. Well-
known supervised machine learning algorithms 
are decision tree, support vector machine, linear 
regression and logistic regression. 

Decision trees are very popular among clas-
sification algorithms. The algorithm uses a tree 
representation of options and maps the entire de-
cision-making process. The input data is divided 
according to its most significant characters. The 
decision branches into tree structures until the 
algorithm reaches a prediction [23, 24]. Support 

vector machine can be used for both classification 
and regression. The algorithm creates hyperplanes 
and groups different classes. It is generally used 
for binary classification, but the algorithm can be 
extended to multiclass classification [24]. Simple 
support vector machine algorithms are used when 
solving linear regression or classification. Kernel 
support vector machines are used for non-linear 
data because they provide higher “elasticity” of 
distributions. Support vector machine algorithms 
can discover relatively complex connections be-
tween input and output information and can also 
work with relatively small amounts of data with 
relatively high accuracy [23]. Linear regression 
represents the simplest example of regression. 
The algorithm connects the scalar response with 
one (or more) inputs by linear dependence, which 
means that the response can be estimated using 
a linear combination of the input. Techniques 
such as simple linear regression, ordinary least 
squares, gradient descent, regularisation are used 
for model training [23, 25]. Another algorithm is 
logical regression, which is used in classification 
problems because its output is a discrete value. 
Despite its name, it is therefore a binary classifi-
cation algorithm. This assumes that the variable 
under study can be classified into two different 
classes e.g. 0 or 1, true or false, etc. [24]. The al-
gorithm is used when there is a need to predict the 
output as a dependent factor using an independent 
factor (input) [23].

The aim of this study is to check if artificial 
intelligence can be utilised as a method to assess 
the moisture of porous materials using raw time 
domain reflectometry signal and verify if it is pos-
sible to achieve smaller measurement errors than 
when using the traditional processing method.

MATERIALS AND METHODS

Materials

Equipment consisted of the following devic-
es: VO-500 laboratory furnace (Memmert, Ger-
many) for drying aerated concrete samples to a 
dry form, WPT 6C/1 laboratory scale (Radwag, 
Poland), TDR equipment including a LOM lab-
oratory multimeter (ETest, Lublin, Poland) and 
TDR surface sensors, i.e. sensor A and sensor 
B (own design and manufactured at the Lublin 
University of Technology) previously presented 
in the following articles [9, 26] and a personal 
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were made on dry samples and then on the samples 
with moisture levels mentioned before. The tests 
were carried out under constant temperature (20 
°C) and relative air humidity (50%) conditions.

Data processing methods

Classical TDR evaluation method

Data analysis using the standard approach re-
lied on estimation of apparent permittivity (ε) val-
ue utilising the formula [2], where tp is a time of 
signal propagation [ps] between two-time markers 
(negative on resistor soldered to a printed circuit 
of a sensor, and positive on sensor termination) 
minus the sensor dead time associated with the 
passage between the resistor and the beginning 
of the measuring element. Graphical presenta-
tion of the TDR signals are presented in the “Re-
sults” section. L is the measuring element length, 
which in case of the applied sensor was always 
equal 20 cm. With apparent permittivity values 
established for both sensors and material mois-
tures calibration formulas were developed which 
were, according to the previous research, second 
grade polynomial functions presented in table 
1. To evaluate the quality of the applied models 

computer supporting the TDR multimeter control 
and data management. The non-invasive sensor A 
(Figure 1a) is made of black polyoxymethylene, 
characterised by an apparent permittivity value of 
3.8 [-] [26]. The length of the measuring element 
A is 200 mm and its width is 50 mm. Measuring 
rods are made from brass flat bar with a cross-sec-
tion of 2 × 10 mm2. Sensor A communicated with 
the TDR meter via an angled BNC connector. 
The connector was soldered to the circuit board 
connecting the measuring rods to the connector. 
A flat bar is placed in the dielectric of sensor A. 
The sensor B is shown in Figure 1b. It is similar 
in construction and made from the same materi-
al as the sensor A. Its length is 200 mm, and its 
width is 100 mm. As in the case of the sensor A, 
the waveguides of the probes were made from a 
brass flat bar with a cross section of 2 × 10 mm2. 

Methods

Aerated concrete was used for the tests as the 
building material. In the presented research, sam-
ples of 450 kg·m-3 of aerated concrete were used. 
Five samples were prepared for non-invasive 
measurements. The dimensions of the samples 
used for non-invasive tests were 220×120×40 
mm. In Table 1, there are presented data of all 
dried samples used in the experiment.

The samples were dried to the constant weight 
and gradually moistened with pure water to ob-
tain saturation status up to 64%. During satura-
tion process the following moisture states were 
achieved: 5%, 10%, 15%, 20%, 40%, 50%, 60%, 
and 64%. The samples were then tested with a 
non-invasive sensor A and then with sensor B to 
obtain reflectometric readouts.

The tests involved the collection of TDR wave-
forms at various moisture values. Measurements 

Figure 1. TDR sensors used in experiment (a) Sensor A, (b) Sensor B

Table 1. Basic physical data of aerated concrete 
samples used in the experiment

Sample Mass [g] Apparent density 
[kg·m-3]

1 865.1 444

2 877.1 450

3 878.9 451

4 866.2 444

5 872.4 447

Average 871.9 447

a) b)
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coefficients of determination (R2) and root mean 
squared error (RMSE) values were calculated.

Data analysis using the supervised 
machine learning

Artificial intelligence method was applied as 
an alternative for TDR data analysis. Machine 
learning regression models were used to obtain 
the expected relationships. The used models 
have the potential to allow moisture estimation 
based on raw data measured using the TDR tech-
nique. For this purpose, the supervised learning 
method was used, and the analyses were carried 
out in the Matlab software using the Regression 
Learner App tool [27]. This tool offers several 
regression models in different categories, such 
as linear regression model, regression trees, sup-
port vector machine, efficiently trained linear re-
gression or Gaussian process regression. Three 
machine learning methods were selected that 
provided a fairly wide range of expected results:
 • support vector machine – coarse gaussian,
 • linear support vector machine,
 • gaussian process regression.

Support vector machine – Coarse Gaussian tech-
nique is a non-linear supervised machine learning 
algorithm. The technique can be used equally in re-
gression and classification analyses. The calculations 
work with a training dataset that contains predictor 
variables (x) and response variables (y). During the 
training of the model, this dataset is uploaded, which 
is subsequently cross validated [28, 29]. Mathemat-
ically, Coarse Gaussian kernel algorithm can be ex-
pressed by the following formula [28]: 
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where: Kernel scale set = P·4, where P is the 

number of predictors. 

The linear support vector machine algorithm 
uses a linear model to divide domains. Similar 
to the previous model, the data contain predic-
tor variables (x) and response variables (y). The 
linear support vector machine is mathematically 
expressed as [30]:
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where: γ ∼N(0,σ2). 

Symbol σ2 represents the error variance and 
together with the coefficient w they are estimated 
from the input data [31]. The input data is first 

linked with a set of answers and then the data do-
main is linearly divided into classes. 

Gaussian Process Regression are nonparamet-
ric probabilistic models, which are used for inter-
polation between points in the input space, usually 
high-dimensional [31, 32]. The training data set 
represents the set {(xi, yi); i = 1, 2,..., n}, where 
xi ∈ Rd is the predictive value and yi ∈ R is the re-
sponse and n is number of observation. This model 
is based on a linear regression model, formula (4). 
Gaussian process regression model clarifies latent 
variable from Gaussian process f(xi), i = 1, 2, ..., n 
and basic function h. Gaussian process represent 
a set of variables and any finite number from this 
set have a joint Gaussian distribution. When is n 
observation (x1, x2, …, xn) and {f(x), x ∈ Rd} is a 
Gaussian Process, then joint distribution of the 
random variables f(x1), f(x2), …, f(xn) is Gaussian. 
Gaussian process is defined by covariance func-
tion f(x, x‘) and by its mean function m(x), then 
E(f(x)) = m(x) and cov[f(x), f(x’)] = E[{f(x) − m(x)}
{f(x’) − m(x’)}] = k(x, x’) [27].

RESULTS

The results of the experiments are series of 
reflectograms acquired during measurements. 
The reflectograms are the curves showing the 
electromagnetic pulse propagation along the sen-
sors. In abscissa, there is presented time of sig-
nal propagation in nanoseconds, and in ordinate, 
signal voltage is presented. In Figure 2, four ex-
emplary waveforms used in further calculations 
are presented. Within the experiment two sets of 
waveforms were acquired for two types of sen-
sors. Each set of data consisted of moisture val-
ues (between 0% and 64%) that were evaluated in 
laboratory measurement using gravimetric meth-
od and waveforms.

DISCUSSION

Classical TDR approach

In the first step, apparent permittivity values 
were calculated based on the waveforms, and 
then they were used to formulate the calibration 
models representing the dependence between 
apparent permittivity and moisture. Figure 3 
shows the dependence for sensor A, and Figure 4 
for the sensor B. Table 2 presents the developed 
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regression formulas based on the measurement 
data.Figures 3, 4 and Table 2 clearly show that 
models fit the measured parameters well. The 
resulting model in both case is described by pol-
ynomial function, which is typical for this type 
of sensors and was frequently applied by many 
scientists [7, 10–13]. The coefficient of determi-
nation is close to value 1, which indicates a good 
accuracy of the models. 

Machine learning method

To compare the potential to evaluate moisture 
using several methods of data analysis, correlation 
curves were presented that combine the laboratory 
readouts of moisture of the samples prepared for 
the experiment gravimetrically with moisture eval-
uated by TDR applying different methods of signal 
interpretation (classical TDR and three machine 
learning methods). These relations achieved for 
sensors A and B are presented in Figures 5 and 6, 
respectively. From the diagrams, it is clearly visible 
that the traditional approach of TDR data analysis 
provides very good quality of moisture evaluation. 
Coefficient of determination of linear function is 
very high, equal to 0.9893. Also, the estimators of 
the function are confirming that TDR method pro-
vides very good accuracy, where the slope coeffi-
cient is equal to 0.9892 and y-intercept is 0.315. It 
ought to be noticed that two models obtained us-
ing the supporting vector machine (SVM) learning 
methods provide less satisfactory dependences with 
R2 = 0.9592 for Coarse Gaussian method. Linear 
SVM provides better R2 value than traditional TDR 
approach, on the other hand, estimators values are 
less satisfactory. Gaussian process regression must 
be mentioned here as the method that provides more 
satisfactory parameters in terms of the coefficient of 

Figure 2. TDR signal. Exemplary diagrams showing the waveforms for dry (a), wet 
– 20% (b), wet – 40% (c) and saturated – 64% (d) materials (sensor A)

Figure 3. Calibration model developed for 
sensor A and examined aerated concrete
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determination and the regression estimator values, 
which are equal nearly 1 for R2 and slope estima-
tor, and zero for y-intercept. A similar comparison 
was conducted for sensor B. Similarly, to sensor A 
it is visible that the traditional approach is still quite 
efficient. Coefficient of determination equals here 
to 0.992. Also, the estimators of the function are 
even better than in the case of sensor A. The mod-
els which utilise supporting vector machine learn-
ing methods are also worse in terms of coefficients 
of determination and linear function estimators, but 
Gaussian process regression provides more sat-
isfactory parameters in terms of the coefficient of 
determination and the regression estimator values, 
which are equal nearly to 1 for R2 and slope esti-
mator, and zero for y-intercept. Additionally, data 
analysis was supplemented with root mean squared 

Figure 4. Calibration model developed for 
sensor B and examined aerated concrete

Table 2. Achieved regression models based on the diagrams presented in Figures 3 and 4
Sensor type Regression model Coefficient of determination

Sensor A W = – 1.0382·ε2 + 22.598·ε – 60.13 0.9893

Sensor B W = – 0.5716·ε2 + 15.907·ε – 41.725 0.992

Figure 5. Dependences between moisture determined gravimetrically and 
determined using sensor A and several methods of data analysis



277

Advances in Science and Technology Research Journal 2024, 18(3), 270–279

error analysis in order to compare the measuring 
errors of all techniques of data analysis. All RMSE 
values are presented in Table 3.

From the readouts presented in Table 3 it can 
be noticed that the standard approach to TDR data 
analysis is still efficient and offers good accuracy 
of moisture estimation. Values oscillating around 
2% are still satisfactory for the measured material. 
It must be mentioned here that they are compara-
ble or better to those presented in many literature 
sources, where the Topp et al. [10] provided RMSE 
value for his calibration model in a range between 
1% and 6.6%, depending on material. Malicki et al. 
[11] valuated his model for RMSE value at the level 
of 3%. It must be underlined here that those values 

are achieved for invasive TDR probes, but are rep-
resentative for universal formulas of calibration and 
moisture is measured in volumetric water content 
value, which may be different from mass moisture 
depending on material bulk density. Comparing the 
RMSE for universal formulas available in literature, 
it must be noticed that the values achieved here us-
ing standard TDR analysis are worse from other 
scientific results – for example Domingues-Nino et 
al. [33] achieved RMSE values between 0.5% and 
1% and Udawatta et al. [34] achieved from 0.8% to 
3.4%. Additionally, it is worth mentioning here that 
the RMSE values achieved in this research using 
the standard processing methods are comparable to 
the values achieved by the co-authors of this paper, 

Figure 6. Dependences between moisture determined gravimetrically and 
determined using sensor B and several methods of data analysis

Table 3. Root mean squared error values achieved for both types of sensors and different methods of TDR signal analysis
Method RMSE for Sensor A [%] RMSE for Sensor B [%]

TDR (standard approach) 2.391 2.061

Coarse gaussian SVM model 6.860 7.366

Linear SVM model 2.500 2.451

Gaussian process regression 0.313 0.181
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presented in the following articles [3, 22] where 
RMSE values varied between 2% and 3% for similar 
probes and tested material.

By applying the machine learning methods, it 
is possible to increase the quality of measurement 
and improve the calibration of TDR techniques, 
but it requires applying the suitable method of data 
analysis. Applying the supporting vector machine 
learning methods gives no advantage over tradi-
tional TDR signal processing. In the case of Coarse 
Gaussian SVM model, the achieved values were 
worse and achieved RMSE values about 7%, which 
means that they should not be applied for TDR data 
analysis. By applying the linear SVM model, it 
is possible to achieve similar quality of measure-
ment to the classical approach or worse, which still 
makes this method not applicable. This is mainly 
due to the fact that the processed raw TDR signal 
was a series of voltage changes over time, only one 
for each measurement. SVM methods cope better 
with multidimensional data and in the case of the 
analysed signal this feature was not used, while 
the Gaussian process regression learning method 
is more flexible and universal for one-dimensional 
data [35] and allows to achieve the highest possi-
ble accuracy of readings with RMSE values equal 
0.181% for sensor B and 0.313% for sensor A. This 
is many times better from the other learning meth-
ods and standard TDR data interpretation.

CONCLUSIONS

Within this study, it was confirmed that ma-
chine learning methods could be utilised to assess 
the moisture of porous materials using time do-
main reflectometry method. The most important 
benefit of this work is that it is possible to find 
the appropriate model with a higher accuracy than 
that of the empirical models with a traditional ap-
proach and thus more reliably determine the mois-
ture content of the material.  According to the in-
vestigation of time domain reflectometry raw sig-
nal analyses using various machine learning meth-
ods, the following conclusions may be formulated: 
standard approach to TDR data analysis for two 
applied sensors still provides satisfactory quality 
of measurement, which can be estimated in RMSE 
values between 2.0% and 2.4% depending on sen-
sor type. Many machine learning methods still 
provide worse results comparing to the traditional 
TDR method. Gaussian process regression learn-
ing method provided the best quality of moisture 

evaluation reaching the level of 0.2–0.3% of 
RMSE value, which is about 10 times lower from 
the traditional approach. It needs emphasising that 
this study is only limited to moisture assessment 
and only one type of porous material. Time do-
main reflectometry can be also utilised to measure 
moisture of various building materials that differ 
in structure and density, like bricks, concretes 
etc. which needs more advanced techniques of 
data analysing. Additionally, this method could 
be utilised to evaluate salinity of different porous 
materials that is an exploitation problem of many 
buildings. These two topics seem to be interesting 
from the point of method development and are the 
subject of the future research, together with ma-
chine learning application.
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